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BIOPHYSICS OF COMPLEX SYSTEMS.
MATHEMATICAL MODELS
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An investigation has been made on the types of dynamic behaviour of the elementary model
of single-barrier immunity considered in {1, 2). A formula has been derived for evaluating
the stability margin of non-sterile immunity.

1. NORMALIZING OF THE SYSTEM OR REDUCTION TO THE INHERENT TIMES AND SCALES

WE SHALL consider a set of differential equations describing simple single-barrier
immunity [2]:
X=oX -7, Y, (1)
?:7))(}) ~7Y2 )79
where X —amount of the infectious principle; Y—amount of immune factor; a,y,,72 —
coeflicients characterizing the multlphcatlon and loss of the infectious principle and

death of the immune factor; [f(X)———|mmune force of the body depending on the critical
value X.
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Two main assumptions are made on /J’(ff): the existence of the critical value X =a
when immune protection is actuated and the stepped pattern of the immune protection:

0 X<a
B X>a
We shall reduce system (1) to inherent times and scales. Dividing both equations by
¥, and introducing the new time 7=1y,r we reduce the time to the scale in which as time
unit we take the depletion of the immune force by e time. The scale for X and Y is so
chosen that the critical value of infection is equal to unity and the coefficient for ¥ in

the first equation is also unity.
In sum, we obtain a system with two parameters « and f

E(f>={ @)

X=aX-Y, 3)
Y=B(X)-Y.
The phase plane (X, Y) of the system (3) is divided into two parts: for X from 0 to 1—
the zone of excluded immunity and for X > |—the zone of included immunity.

The behaviour of the system will depend on the value of the dimensionless parameters
a and f. The curves on this plane separating the zones with uniform dynamic behaviour
form the “structural portrait” of the system in the plane (X, ¥) for the given values of
the parameters.

We know nothing beforehand about the value of the parameters « and ffand therefore
we shall investigate all the parametric plane. The value « is determined not only by the
infectious principle but depends on the medium and it is quite possible that « for the
same infectious principle may strongly differ. It may be assumed that the actual values
of « and f will be close to unity. Herein lies one of the main advantages of systems
reduced to inherent times and characteristic scales.

2. STRUCTURAL AND PHASE PORTRAITS OF THE SYSTEM

We shall investigate the system (3), it has one or three equilibrium points, the boundary
is the condition «=f. We shall denote the equilibrium points by O, S and C. It is
possible to verify that the points O and C are saddles, the point S may be either a focus
or a centre [3].

It is easy to show that the slope of the separatrices of the saddles is equal to K=0
and K=1+a. We shall denote the separatrices entering the saddle by the sign (+)
and those emerging by the sign (—) with the corresponding letter of the saddle. We shall
be interested in the relative position of the separatrices (C,, C_ O,, O_).

We shall begin with the case of the maximum degeneration when the separatrix C,
coincides with O _ and the separatrix C_ with O, . The condition for coincidence
for the separatrices C_ and O, is f=1+« and for O_ and C,, f=a (1 +a). In the
structural portrait (Fig. 1) the point of maximum degeneration is a=1, f=2.

The lines f=1+a and f=a(1 +a) are the boundaries where the change of the order
of passage of the separatrices occurs. In the structural portrait we shall draw a further
line of neutrality a=1 for the point S.
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We shall obtain the breakdown of the structural portrait into zones (Fig. 1) with
uniform dynamic behaviour. The whole system has seven main types of phase portraits,
It should be noted that in the system two types of recovery are possible: sterile, when
the infectious principle is completely suppressed and non-sterile, when equilibrium is set
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FiG. 1. Structural portrait of system: I-VII—zones of main types of dynamic behaviour,

up between the synthesis of immune protection and the multiplication of the microbes
and, finally, a third outcome is possible when the system does not cope with the
infection.

In our system sterile immunity corresponds to the negative values of X, this occurs
because of the failure to allow for the inversion to zero of y, for small values of X.
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FIG. 2. Phase portrait of system for «a=0-8, §=0-4 (zone I). P—main zone of course of illness (un-
stable), M —zone of sterile immunity; W—zone of absolute instability.

FiG. 3. Phase portrait of system for 2=0-8, f=1-12 (zone II). The appearance of the region of
sterile immunity Q is characteristic.

Figure 2 shows the phase portrait for the zone I: it has one steady point O. The
Figure shows that the system in this zone of parameters is quite unstable, and separatrices
O, and O_ form the region P. This portrait has regions of sterile immunity M and ab-
solute instability W characteristic of all the phase portraits and the entry into these
regions is due either to the large store of immunity or to the very heavy initial infection.
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The zone 11 has the phase portrait shown in Fig. 3. The zone is located together
with 1Iand IV in that part of the plane where o<1 and there are three equilibrium
points. Figure 2 shows that in the region of instability P, a region of non-sterile im-
munity Q appears formed by the separatrix C, and characterized by the store of re-

sistance in relation to the infection.

SN
T
X
]

FiG. 4 FiGg. §
Fi1G. 4.Phase portrait of system for a=0-8; f=1-5 (zone ). The region P is ousted by the region Q.
F1G. 5. Phase portrait of system for =08, f=36 (zone 1V); M’'—region of sterile immunity.

Figure 4 presents the phase portrait for the zone 111. It will be seen that the unstable
region P is ousted by the region of non-sterile immunity Q and the store of resistance
increases. From Fig. 5 for the phase portrait of zone IV it will be seen that the region

FiG. 6 Fi1G. 7
F1G. 6. Phase portrait of system for a=1-1, f=3-6 (zone V). Region M’ ousts region Q.
F1G. 7. Phase portrait of system for a=1-1, f=2:25 (zone VI). W’—region of instability.

of non-sterile immunity is surrounded by a region of sterile immunity A which increases

like the store of resistances with rise in f.
For a> [ we move from the zone IV to V. The zones V, VI and VII lie in that part of

the plane where the point S is unstable.
For «=1 the separatrix O_ coincides with the separatrix O, which corresponds

to the neutrality of the point S and the presence of closed integral curves within the loop

of the separatrices.
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For > 1 the separatrix O _ shifts to the outside while the separatrix O, runs into
the saddle unwinding from the point S and the region of non-sterile immunity © is
converted to the sterile immunity M’ (Fig. 6).

With fall in f we pass to the zone VI, of most interest in its dynamic behaviour

(Fig. 7).
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FiG. 8. Phase portrait of system for =11, §=1-75 (zone VII). The predominance of the regions
of instability P and W’ is characteristic.

In this case the separatrix C_ overrides the separatrix O, running from the point S
and produces a flux of self-recovery M’. The separatrix O_ overrides C running from
the same point S, producing a flux with a fatal outcome W'

The phase portrait of the zone VII (Fig. 8) is characterized by the fact that the separa-
trices O, and O _ override separatrix C_ and produce a fatal flux P. The separatrixC_
in turn forces C_ to unwind from the point S producing the fatal flux W".

To compare the phase portraits with a region of non-sterile immunity it is desirable
to obtain a quanfitative evaluation of resistance.

We present the formula

- 4

This formula determines the store of resistance in relation to infections in zones

IIT and IV.
For the zone IT we shall write the following formula:

~2a2+a~/3 (5)

which represents the distance from the point S to the separatrix C_ in the direction X.

It should be noted that these formulae are meaningfull for < |. For «> | the point
S becomes unstable and therefore in this case there is no point in speaking of the re-
sistance store.

DISCUSSION

From the phase portraits considered it will be seen that the immune protection
of the body may be of an oscillatory character and oscillations may be decaying and
unstable. The dying oscillations lead to non-sterile immunity while the unstable may lead
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both to death and sterile immunity. Incorrect treatment may result in relapses. For
example,if we give a drug at point / (Fig. 7) where there are many microbes and a good
level of the immune factor (in which self-recovery is possible) then we may enter point 2
from which the patient comes into the zone of relative health but then after a certain
time, the disease is again exacerbated (point 3).

In conclusion, it should be noted that the model considered does not give a complete
description of immunity in view of the complexity of the process (see multi-barrier
pattern [2]) although some types may be described by the model presented on the basis
of which it is possible to choose a definite strategy and tactic of treatment.

The authors are grateful to V. G. Yerokhin and Sh. I. Barilko for technical assistance

and N.I. Mysin for help in drawing up the paper.
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